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Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation:
Large-scale behavior of the turbulent transport coefficient

Alexander V. Milovanov
Department of Space Plasma Physics, Space Research Institute, 117810 Moscow, Russia

~Received 23 October 2000; published 21 March 2001!

The formulation of the fractional Fokker-Planck-Kolmogorov~FPK! equation@Physica D76, 110 ~1994!#
has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the
long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A deri-

vation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11
2 degrees of freedom

is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport
regimes~i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and
behavior associated with self-organized criticality! are obtained as partial cases of the generalized transport
law. A comparison with recent numerical and experimental studies is given.

DOI: 10.1103/PhysRevE.63.047301 PACS number~s!: 47.52.1j, 05.60.2k, 47.27.Qb, 05.40.Fb
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From a wealth of studies it has been clearly establis
@1,2# that the Hamiltonian chaotic dynamics of passive p
ticles can be adequately described by the fractional exten
of the Fokker-Planck-Kolmogorov~FPK! equation

]bP

]tb
5

]a

]~2j!a
~AP!1

1

2

]2a

]~2j!2a
~BP!, ~1!

whereP[P(j,t) is the probability density of finding a par
ticle at pointj at time t, and the fractional exponents (a,b)
define the derivatives over space (j) and time~t! variables,
respectively. The quantitiesA andB on the right of Eq.~1!
are given by

A5 lim
Dt→0

^^uDjua&&

~Dt !b
, B5 lim

Dt→0

^^uDju2a&&

~Dt !b
, ~2!

where ^^•••&& denotes a generalized convolution opera
@2#. Equations~1! and~2! reproduce the standard FPK equ
tion @2,3# for a5b51.

The introduction of the fractional parameters (a,b) in the
kinetic equation~1! accounts for the rich class of anomalo
dynamical phenomena such as long-time trappings and
most regular bursts like Levy flights@2,4#. A comprehension
of the essential role played by trappings and bursts in
description of chaos led to the formulation of the ‘‘stran
kinetics’’ discussed in Ref.@5#.

The fractional FPK equation~1! admits scale-invarian
~i.e., self-similar! solutions in either of the partial cases$A
50,BÞ0% and $AÞ0,B50%. In our study, we are mostly
interested in the case$A50,BÞ0% when Eq.~1! is reduced
to the fractional transport equation

~]bP!/~]tb! 5 1
2 $]2a/@]~2j!2a#% ~BP!. ~3!

Equation ~3! includes both Levy flights@4# and diffusion
phenomena on fractal sets@6,7#. The asymptotics of the
transport processes deriving from Eq.~3! are given by@2#

^uju2&52Dtb/a ~ t→`!, ~4!
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whereD is the generalized transport coefficient. The expli
form of D depends on the value of the anomalous scal
exponentb/a assumed in Eq.~4!. The effect of thetopology
of phase space of a chaotic system on the basic transpor
~4! was addressed in Refs.@2,6#. Settinga5b51 in expres-
sion ~4!, one recovers the diffusion-type process

^uju2&52Dt1 ~ t→`! ~5!

associated with the conventional FPK equation@3#.
The anomalous transport law~4! is customarily repre-

sented in the form@8#

^uju2&52Dt2H ~ t→`!, ~6!

where 0<H<1 is the Hurst exponent. A comparison wit
Eq. ~4! shows thatH5b/2a. As was demonstrated by Man
delbrot @9#, the Hurst exponent 0<H<1 defines the Haus
dorff fractal dimensiondw of the particle chaotic trajectories
i.e.,

dw51/H, dw>1. ~7!

In the case of diffusion~5!, a5b51; henceH51/2 and
dw52. Combining Eqs.~6! and ~7!, one gets@6,10#

^uju2&52Dt2/dw ~ t→`!. ~8!

The consideration below is restricted to a stochas

Hamiltonian system with 112 degrees of freedom, i.e.,

dx

dt
5

]F~x,y,t !

]y
,

dy

dt
52

]F~x,y,t !

]x
, ~9!

whereF(x,y,t) is the time-dependent Hamiltonian functio
and$j[(x, y)% is the phase space. Without loss of gener
ity, we assume thatF(x,y,t) is a periodic function oft, with
the characteristic frequencyv. Our interest in Eqs.~9! is
motivated by their importance for the foundations of stoch
tic dynamics@1–3#, as well as their abundance in variou
applications@11#.
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The physical origin of stochasticity in system~9! is the
nonlinear resonancebetween the periodic variation of th
Hamiltonian functionF(x,y,t) and the particle migration
along the closed isoenergetic orbits$F(x,y,t)5h% @3#.
~Here, the parameterh defines the corresponding energ
level.! In the low-frequency limit(v→0), the resonance
conditions are satisfied near the percolating orbits@i.e., the
separatrices $F(x,y,t)5hc%# whose diverging lengths
match the particle excursion periods of;2p/v→`. As is
well known @3#, the resonances strongly overlap near
separatrix, and the particle motion evolves into chaotic w
dering from one resonance to another. The separatrix is
always surrounded by a layer of stochastic dynamics.

Let N@1 be the effective number of mutually overla
ping resonances. The value ofN can be estimated from firs
principles@i.e., from the HamiltonianF(x,y,t)# @3#. By or-
der of magnitude,

N;l/dl@1, ~10!

wherel is the coherence scale of the fieldF(x,y,t) anddl
is the characteristic distance between the resonances.

Then let us introduce the dimensionless parameter

A[ u/vl , ~11!

where u;@(]F/]x)21(]F/]y)2#1/2 is the particle migra-
tion velocity. The quantityA is customarily referred to as th
‘‘Kubo number.’’ In view of the conditionv→0 ~to be im-
plied in what follows!, we haveA→`. From Eqs.~10! and
~11! one gets

u/~vdl! 5AN@A→`. ~12!

Conditions~10! and ~12! guarantee the transition to cha
otic dynamics near the separatrix at time scales much sh
than;1/v. In fact, the characteristic decorrelation time for
particle random walk on the set of resonances can be
mated as

tc;C0

dl

u
;C0

l

Nu
;

C0

AN
1

v
!

1

v
, ~13!

whereC0;3 is a customarily assumed constant. The tran
tion to chaos near the separatrix thus occurs much faster
the HamiltonianF(x,y,t) evolves in time.

We now demonstrate that the fractal structure of the p
ticle chaotic trajectories can appear in the anomalous sca
of the transport coefficientD @see the right hand side of Eq
~8!# versus the Kubo numberA.

Consider a continuous set of initial condition
$(xi

[0] ,yi
[0] )%, i PI , for the Hamiltonian trajectories

$(xi
[ t] ,yi

[ t] )%, t>0. ~The subscripti denotes a continuous pa
rameter ranging through an intervalI.! The set$(xi

[0] ,yi
[0] )%

can be associated with the correlation scale

«;max
i , j PI

@~xi
[0]2xj

[0] !21~yi
[0]2yj

[0] !2#1/2. ~14!
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We assume thatdl&«!l: This defines a set of initially
close trajectories whose further mixing and divergence s
port the turbulent particle transport on large scales.

For arbitrary dl&«!l, one finds the mixing scalel
where the particle trajectories become braided due to
wandering over the set of the overlapping resonances
scales exceeding;C0dl, the trajectories start to reveal th
property of self-similarity@2,3,12#; this enables one to relat
the mixing scalel to the parameter« via a dimensionless
~i.e., power-law! function, l;«2m, wherem is a constant of
the order of 1. More precisely,

l /dl 5~«/dl!2m. ~15!

~We chosedl to be a suitable measure of length.! Given the
mixing scalel, one estimates the corresponding fractal len
Ll of the self-similar trajectories~each having the Hausdorf
dimensiondw>1) as@8,9#

Ll5dl@~ l /dl!dw#. ~16!

Next, consider the entire ensemble,$(xi
[ t] ,yi

[ t] )%, i PI , of
the trajectories~16! at the mixing scalel:

$@~xi
[ t]2xi

[0] !21~yi
[ t]2yi

[0] !2#1/2; l %. ~17!

These cover a phase volume

Vl5«Ll ~18!

equal to the product of the correlation scale« with the tra-
jectory lengthLl . Substituting« for dl( l /dl)21/m @see Eq.
~15!#, we get

Vl5dl2@~ l /dl!dw21/m#. ~19!

On the other hand, the self-similarity condition applied to t
entire ensemble~17! readsLl /dl; l /«, yielding Vl;«Ll
; ldl. This is consistent with Eq.~19! if the parameterm
obeys

1/m5dw21>0. ~20!

In view of the explicit time dependence of the Hamiltonia
F(x,y,t), the ensemble of chaotic trajectories~17! observes
the finite lifetime

t; «/vl , ~21!

wherev describes the variation of the fieldF(x,y,t) at the
~relatively large! coherence scales;l@dl.

We now require that the particles migrating with the ch
acteristic velocityu cover a distance of the order ofLl during
the lifetime of the ensemblet:

Ll;ut. ~22!

Combining Eqs.~15!,~16! and~20!,~22!, after simple algebra
one obtains

A5 u/vl 5~ l /dl!2dw21 ~23!
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 047301
where A is the Kubo number. Using Eqs.~13!, ~15!, ~20!,
~21!, and~23!, it is straightforward to verify that the lifetime
t far exceeds the microscopic decorrelation timetc for A
→`, i.e.,

t@tc . ~24!

Condition~24! shows that the stochastic regime for the set
the initial conditions~14! is achieved long before the en
semble$(xi

[ t] ,yi
[ t] )% decays due to the substantial nonau

nomy of the HamiltonianF(x,y,t) on long time scales
;1/v. ~Strictly speaking, the stochasticity isintermittent in
time since the chaotic trajectories can sporadically leave
close-to-separatrix domain where the resonances ove
The effect of intermittency on the particle chaotic dynam
was analyzed in Ref.@13# in connection with the role of
coherent vertical structures in the flow.!

The large-scale turbulent transport coefficient for the
semble of chaotic trajectories~17! can be determined as

D; ~1/2t!VlNv2112/dw, ~25!

whereN@1 is the effective number of mutually overlappin
resonances, and the factorv2112/dw stands for the anoma
lous behavior of̂ uju2&}t2/dw versus timet @see Eqs.~2! and
~8!#. Considering Eqs.~10!, ~16!, ~18!, ~21!, and ~23!, we
find

D; 1
2 l2v2/dwAdw /(2dw21) ~26!

independently of the microscopic scaledl.
The proposed derivation of the turbulent transport coe

cient ~26! generalizes the pioneering approach of Gruzin
et al. @14#, who considered anomalous particle diffusion
weblike convective structures~i.e., the ‘‘a webs’’ @11#!. The
Hausdorff fractal dimension of thea webs was conjectured
to coincide with the hull exponentdh57/4 describing the
external perimeters of the percolating isoenergetic conto
@11,14#. Settingdw5dh57/4 in expression~26!, one repro-
duces the scaling of the turbulent diffusion coefficient,D
}A7/10, obtained in Ref.@14#. In our study, we avoid direc
associations between the dynamical chaos in Eq.~9! and the
structural properties of the isoenergetic contours, in cont
to @14#. This modification addresses the substantially d
namical nature of the fractal dimensiondw .

In view of expression~26!, the anomalous transport law
~8! becomes

^uj~ t !u2&;l2v2HAgt2H ~ t→`!, ~27!

whereA→`; H51/dw is the Hurst exponent; and

g5dw /~2dw21!51/~22H ! ~28!

determines the scaling of the transport coefficientD with the
Kubo numberA.

For vanishing frequencyv→0, the transport coefficien
~26! goes to zero,D→0, if the fractal dimensiondw satisfies
the condition 2/dw.dw /(2dw21), i.e.,

1<dw,21A2. ~29!
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Hence, the Hurst exponentH obeys

~22A2!/2,H<1, ~30!

while the Kubo number exponentg ranges through

22A2,g<1. ~31!

In the limiting case dw→21A2, H→(22A2)/2, g
→22A2, the transport coefficientD saturates at

D5 1
2 l2v22A2A22A25 1

2 lA2u22A2 ~32!

and does not depend onv. The corresponding transport law
is thesubdiffusion

^uj~ t !u2&;2Dt22A2 ~ t→`! ~33!

with exponent 2H522A2;0.6. This regime can be identi
fied with particle dissemination in the static~i.e., frozen!
field F(x,y,v50) due to the intrinsically unstable dynamic
near the separatrix@3#.

One remarks that the value of 2H in Eq. ~27! satisfies

2H>g. ~34!

The exact equality in Eq.~34! is achieved for the frozen
HamiltonianF(x,y,v50). Condition~34! guarantees the fi-
niteness of the turbulent diffusion coefficientD for vanishing
v.

The opposite limit,dw51, H51, g51, determined by
conditions~29!–~31!, describes theballistic type of particle
dynamics:

D5 1
2 l2v2A15 1

2 vlu, ~35!

^uj~ t !u2&;2Dt2 ~ t→`!. ~36!

The ballistic regime~35!, ~36! can be associated with th
dominant role ofLevy flightsand was analyzed numericall
in, e.g., Ref.@15#.

The diffusionprocess~5! can be recovered from relation
~26! and ~27! by settingH51/2 anddw52. Hence,g52/3,

D; 1
2 vl2A2/3, ~37!

^uj~ t !u2&; 1
2 vl2A2/3t1 ~ t→`!. ~38!

The diffusion-type transport~37!,~38! can be realized for
relatively strong stochasticity when the typical scales of
chaotic domains are comparable withl@dl or more @2#.
Note that the Kubo number exponentg52/3 is actually close
to ~although slightly smaller than! the original estimateg
57/10 proposed by Gruzinovet al. @14#. The deviation ofg
from the value 7/10 was recognized numerically by Re
et al. @16# and Zimbardoet al. @17#, who observed a some
what slower dependence of the turbulent transport coeffic
upon the Kubo number as compared with the prediction
Gruzinovet al. @14#, D}A7/10.

In conclusion, let us consider the anomalous transport
~26!,~27! in association with the particle dynamics near se
1-3
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organized criticality~SOC!. The concept of SOC@18# ad-
dresses the important issue of self-organization in nonlin
dynamical systems in connection with the near-critical
havior characteristic of many phenomena@19#. A transition
to SOC customarily leads to the formation of self-simi
~fractal! structures in a wide range of scales. Real-sp
properties of these structures can often be described by
generalized~Hausdorff! dimensiondf , which deviates from
the topological~integer! dimension of the system. In the fre
quency domain, the fractal geometry of SOC systems
pears in the power-law decreasef 2h of the Fourier energy
density spectrum@18#, where the power exponenth52df
21 depends on the Hausdorff dimensiondf @20#. Self-
organized criticality thus establishes an intimate connec
between spatial scales and time scales for complex dyn
cal systems.~Note that the topological characteristics of SO
systems must obey the condition of path connectednes
general, the features of connectedness of the fractal distr
tions are not in one-to-one correspondence with the shap
the Fourier energy density spectrum as determined bh
@21#.! In the context of transport processes, the notion
SOC can be considered as synonymous with ‘‘se
organization to a state of critical percolation.’’ For critic
percolation on a plane, 1<df<S @22# where S
5 log108/log103'1.89 is the Hausdorff dimension of th
square Sierpinski carpet@8#. Hence 1<h<2S21'2.78.
The limiting valuedf51 corresponds to minimally deve
oped fractal structures in space and thef 21 spectrum often
referred to as Flicker noise. The critical percolation regi
implies a ‘‘universal’’ relationship between the Hausdo
dimension of the chaotic trajectoriesdw and the fractal di-
mensiondf of the structure on which the random walk tak
place:

2df /dw5C'1.327;4/3. ~39!
of
,

ce
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~The ratio ds[2df /dw is often termed thespectral fractal
dimension @6,10#.! Equation ~39! represents an improve
form of the Alexander-Orbach conjecture@23# and was sub-
stantiated in Ref.@22#. The quantityC is the percolation con-
stant @21#, the fundamental topological parameter derivi
from the transcendental algebraic equationCpC/2G(C/211)
5p @22#. ~Here,G is the Euler gamma function.! Replacing
dw by 2df /C in Eqs.~26! and~27!, one arrives at the gener
alized transport law for SOC:

D; 1
2 l2vC/dfA2df /(4df2C), ~40!

^uj~ t !u2&;2DtC/df ~ t→`!. ~41!

The particle transport at SOC is thus superdiffusive for
<df,C and subdiffusive forC,df<S. The valuedf5C re-
produces the diffusion-type behavior~37!,~38! and corre-
sponds to the ‘‘Kolmogorov’’ spectrumf 2h where h52C
21'1.65;5/3. The upper limitdf5S supports the subdif-
fusive regime with the spectral indexh52S21'2.78, the
Hurst exponentH5C/2S'0.35, and the Kubo number ex
ponentg52S/(4S2C)'0.61. Finally, the valuedf51 ~re-
lated to the Flicker noisef 21) leads to the Hurst exponen
H5C/2;2/3 and the Kubo number exponentg52/(42C)
;3/4. The estimateH;2/3 is in accord with the results o
Carreraset al. @24,25# who foundH;0.6–0.75 for the SOC-
associated currents in tokamaks. Moreover, Carreraset al.
@25# observed a fluctuation spectrum close tof 21 just in the
self-similarity region where superdiffusive transport withH
;0.6–0.75 was recognized. These intriguing results mi
help uncover the fundamental relationship between the
tistical properties of SOC systems and the basic trans
mechanisms operating therein.
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