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Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation:
Large-scale behavior of the turbulent transport coefficient
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The formulation of the fractional Fokker-Planck-Kolmogor@PK) equation[Physica D76, 110 (1994 ]
has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the
long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A deri-

vation of the large-scale turbulent transport coefficient for a Hamiltonian system \%/iﬂe@;rees of freedom

is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport
regimes(i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and
behavior associated with self-organized criticaliaye obtained as partial cases of the generalized transport
law. A comparison with recent numerical and experimental studies is given.
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From a wealth of studies it has been clearly establishe@vhereD is the generalized transport coefficient. The explicit
[1,2] that the Hamiltonian chaotic dynamics of passive parform of D depends on the value of the anomalous scaling
ticles can be adequately described by the fractional extensicgxponeniB/« assumed in Eq4). The effect of theopology

of the Fokker-Planck-KolmogoroFPK) equation of phase space of a chaotic system on the basic transport law
(4) was addressed in Ref,6]. Settinga= =1 in expres-
PP ¢ 1 9% sion (4), one recovers the diffusion-type process
—= (AP)+ = ——(BP), (1)
AT 2o (e=2mtt (1) )

whereP=P(&,t) is the probability density of finding a par- associated with the conventional FPK equafigh

ticle at point¢ at timet, and the fractional exponents (3) The anomalous transport law) is customarily repre-
define the derivatives over spacé) (and time(t) variables, sented in the fornjg]

respectively. The quantitied and B on the right of Eq(1)

are given by (|€2y=2Dt?"  (t—w), (6)
A= lim ((|A€]*)) B= lim (|AE>)) (zy Where O<H<1 is the Hurst exponent. A comparison with
ateo (ADA ateo (ADA Eq. (4) shows thatHH = 8/2a. As was demonstrated by Man-

delbrot[9], the Hurst exponent€H=<1 defines the Haus-

where ((---)) denotes a generalized convolution operatordorff fractal dimensiord,, of the particle chaotic trajectories,
[2]. Equationg(1) and(2) reproduce the standard FPK equa-!-€-s
tion [2,3] for a=B=1.

The introduction of the fractional parameters 8) in the
kinetic equation(1) accounts for the rich class of anomalous I . B
dynamical phenomena such as long-time trappings and a!jp t_he case bqf_d|ﬁu5|or(5), ‘é_'B_l’ henceH=1/2 and
most regular bursts like Levy fligh{®,4]. A comprehension w=2. Combining Eqs(6) and(7), one get46,10)
of the essential role played by trappings and bursts in the
description of chaos led to the formulation of the “strange
kinetics” discussed in Ref5].

The fractional FPK equatioril) admits scale-invariant
(i.e., self-similaj solutions in either of the partial caségl
=0,8#0} and{A#0,8=0}. In our study, we are mostly

d,=1/H, d,>1. @

(|€7)=2Dt?" % (t—c0). 8

The consideration below is restricted to a stochastic
Hamiltonian system with 1 degrees of freedom, i.e.,

interested in the cased=0,5#0} when Eq.(1) is reduced d_X: M d_y = M
\ f , , €)
to the fractional transport equation dt ay dt X
(9PP)1(atP) =3 {32 a(— €)%} (BP). (3)  whered(x,y,t) is the time-dependent Hamiltonian function,

and{&=(x,y)} is the phase space. Without loss of general-
Equation (3) includes both Levy flight{4] and diffusion ity, we assume thab(x,y,t) is a periodic function of, with
phenomena on fractal sef$,7]. The asymptotics of the the characteristic frequency. Our interest in Eqs(9) is

transport processes deriving from E§) are given by[2] motivated by their importance for the foundations of stochas-
tic dynamics[1-3], as well as their abundance in various
(|&3y=2DtFl*  (t—w), (4  applicationg 11].
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The physical origin of stochasticity in systef®) is the ~ We assume thath <s<\: This defines a set of initially
nonlinear resonancéetween the periodic variation of the close trajectories whose further mixing and divergence sup-
Hamiltonian function®(x,y,t) and the particle migration port the turbulent particle transport on large scales.
along the closed isoenergetic orbifsb(x,y,t)=h} [3]. For arbitrary S\<e<\, one finds the mixing scalé
(Here, the parameteh defines the corresponding energy where the particle trajectories become braided due to the
level) In the low-frequency limit(w—0), the resonance wandering over the set of the overlapping resonances. At
conditions are satisfied near the percolating orfiits, the scales exceeding Cyé\, the trajectories start to reveal the
separatrices {®(x,y,t)=h.}] whose diverging lengths property of self-similarity{2,3,12; this enables one to relate
match the particle excursion periods of27/w—o. As is  the mixing scalel to the parametee via a dimensionless
well known [3], the resonances strongly overlap near the(i.e., power-law function,| ~&~#, whereu is a constant of
separatrix, and the particle motion evolves into chaotic wanthe order of 1. More precisely,
dering from one resonance to another. The separatrix is thus
always surrounded by a layer of stochastic dynamics. [/ON = (el ON) ™ *. (15

Let >1 be the effective number of mutually overlap- ) ]
ping resonances. The value bfcan be estimated from first (We chosed\ to be a suitable measure of lengtiven the

principles[i.e., from the Hamiltonianb(x,y,t)] [3]. By or- mixing scalel, one estimates the corresponding fractal length
der of magnitijde e L, of the self-similar trajectorieéeach having the Hausdorff

dimensiond,,=1) as[8,9]
N~\\>1, (10)

L,=SN[(1/8N)%w]. (16)
where\ is the coherence scale of the fieldx,y,t) and 6x Next, consider the entire ensembex! y[")}, iel, of
is the character|st|c distance t_Jetweqn the resonances. the trajectorieg16) at the mixing scalé:

Then let us introduce the dimensionless parameter
{LOT=x)2+ (yfT -y o223, (17

A= u/w\, (12)
These cover a phase volume
where u~[(a®/x)%+ (a®/dy)?]¥? is the particle migra-
tion velocity. The quantity is customarily referred to as the Vi=el, (18)
“Kubo number.” In view of the conditiono— 0 (to be im-

plied in what follows, we haveA— . From Egs.(10) and  €qual to the product of the correlation scalawith the tra-
(11) one gets jectory lengthL, . Substitutings for &\ (I/8\) ~V* [see Eq.

(15)], we get

u/(w\) =ANS>A— . (12 Vi= SNZ[(1] oN) % V], (19

_Conditio_ns(lO) and(12) guarantee_the transition to cha- On the other hand, the self-similarity condition applied to the
otic dynamics near the separatrix at time scales much Short%rntire ensemble17) readsL/S\~1/e, yielding V~sL,

than~1/w. In fact, the characteristic decorrelation time for a_| s\. This is consistent with Eq9) if the parameter,
particle random walk on the set of resonances can be es%'beys: ' "
mated as
1/p=d,—1=0. (20)
S\ N Col 1 B
7 Co oM T AN 0 S o 13 In view of the explicit time dependence of the Hamiltonian
d(x,y,t), the ensemble of chaotic trajectorigls’) observes

whereC,~3 is a customarily assumed constant. The transithe finite lifetime
tion to chaos near the separatrix thus occurs much faster than
the Hamiltonian®(x,y,t) evolves in time.

We now demonstrate that the fractal structure of the par- . L )
ticle chaotic trajectories can appear in the anomalous scalin‘gherew describes the variation of the fiefll(x,y,t) at the

- ; : latively large coherence scales\> S\.
of the transport coefficierb [see the right hand side of Eq. € . . St .
(8)] versus the Kubo numbe. We now require that the particles migrating with the char-

Consider a continuous set of initial conditions acteristic velocityu cover a distance of the order bf during
{(xI° yIO1 ", for the Hamiltonian trajectories the lifetime of the ensemble:

7~ ¢elw\, (21)

{(x!",y[1)}, t=0. (The subscript denotes a continuous pa- L~ur 22)
rameter ranging through an interval The set{(x{°! ,y[®)} L
can be associated with the correlation scale Combining Eqs(15),(16) and(20),(22), after simple algebra
one obtains
e~maf (X% =x{) 2+ (yT =y 22 (19
e A= ulo\ =(1/81)%% 1 (23
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where A is the Kubo number. Using Eq$13), (15), (20), Hence, the Hurst exponeht obeys
(21), and(23), it is straightforward to verify that the lifetime
T far exceeds the microscopic decorrelation timefor A (2—\2)/2<H<1, (30

©, i.e., i
- while the Kubo number exponent ranges through

e 24 2 2<y=1. (31)
Condition(24) shows that the stochastic regime for the set of o
the initial conditions(14) is achieved long before the en-  In the limiting case d,—2+2, H—(2-V2)/2, y
semble{(x/1,y[")1 decays due to the substantial nonauto-— 2~ 2, the transport coefficier® saturates at
nomy of the Hamiltonian®(x,y,t) on long time scales 1 N2 B 12 2
~1/w. (Strictly speaking, the stochasticity iistermittentin D=3 NPo? PAT =g\ Byt ? (32)
time since the chaotic trajectories can sporadically leave thgq does not depend an The corresponding transport law
close-to-separatrix domain where the resonances overlap ine subdiffusion
The effect of intermittency on the particle chaotic dynamics
was analyzed in Ref[13] in connection with the role of <|§(t)|2>~2pt2*v‘7 (t—) (33
coherent vertical structures in the flow.

The large-scale turbulent transport coefficient for the enwith exponent 21=2— \/2~0.6. This regime can be identi-

semble of chaotic trajectori€47) can be determined as fied with particle dissemination in the statice., frozen
o field d (x,y,w=0) due to the intrinsically unstable dynamics
D~ (1/27)ViNo ", (29 near the separatripd].

where N> 1 is the effective number of mutually overlapping One remarks that the value of®2in Eq. (27) satisfies

resonances, and the facter **2“ stands for the anoma- 2H= 1. (34)
lous behavior of |¢|?)=t?/dw versus timet [see Egs(2) and
(8)]. Considering Eqgs(10), (16), (18), (21), and (23), we  The exact equality in Eq(34) is achieved for the frozen

find Hamiltonian®(x,y,» =0). Condition(34) guarantees the fi-
niteness of the turbulent diffusion coefficiehtfor vanishing
D~ %)\sz/dedw/(Zdw_l) (26) o.
. ) ) The opposite limit,d,=1, H=1, y=1, determined by
independently of the microscopic scafg. conditions(29)—(31), describes thallistic type of particle

The proposed derivation of the turbulent transport coeffi-gynamics:
cient (26) generalizes the pioneering approach of Gruzinov

et al. [14], who considered anomalous patrticle diffusion on D= 1 \%w?Al=1 w\u, (35)
weblike convective structurdse., the “a webs” [11]). The
Hausdorff fractal dimension of thea webs was conjectured <|§(t)|2)~2Dt2 (t—o0). (36)

to coincide with the hull exponerd;,,=7/4 describing the

external perimeters of the percolating isoenergetic contour§he ballistic regime(35), (36) can be associated with the
[11,14. Settingd,,=d,=7/4 in expressior(26), one repro- dominant role ofLevy flightsand was analyzed numerically
duces the scaling of the turbulent diffusion coefficief, in, e.g., Ref[15].

«A”0 obtained in Ref[14]. In our study, we avoid direct The diffusionprocess5) can be recovered from relations
associations between the dynamical chaos in(Bigand the  (26) and(27) by settingH=1/2 andd,,=2. Hence,y=2/3,
structural properties of the isoenergetic contours, in contrast

to [14]. This modification addresses the substantially dy- D~ 2 wN?A?3, (37)
namical nature of the fractal dimensialg, .
In view of expression26), the anomalous transport law (ED)]D)~ L oN2AZ3 (t—o0). (38)

(8) becomes
The diffusion-type transport37),(38) can be realized for
relatively strong stochasticity when the typical scales of the
chaotic domains are comparable with> S\ or more[2].
Note that the Kubo number exponepnt 2/3 is actually close
y=d,,/(2d,~1)=1/(2—H) (2g)  to (although slightly smaller thanthe original estimatey
=7/10 proposed by Gruzinost al. [14]. The deviation ofy
determines the scaling of the transport coefficiPrwith the  from the value 7/10 was recognized numerically by Reuss
Kubo numberA. et al. [16] and Zimbardcet al. [17], who observed a some-
For vanishing frequencw— 0, the transport coefficient what slower dependence of the turbulent transport coefficient
(26) goes to zeroD— 0, if the fractal dimensioul,, satisfies upon the Kubo number as compared with the prediction of

(€D ~N202MAMH (1—x), (27)

whereA—«; H=1/d,, is the Hurst exponent; and

the condition 2d,,>d,,/(2d,,— 1), i.e., Gruzinovet al. [14], D=A"0,
In conclusion, let us consider the anomalous transport law
1sd,<2+ \/5 (29 (26),(27) in association with the particle dynamics near self-
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organized criticality(SOQ. The concept of SOC18] ad- (The ratiod,=2d;/d,, is often termed thespectralfractal
dresses the important issue of self-organization in nonlineadimension[6,10].) Equation (39) represents an improved
dynamical systems in connection with the near-critical beform of the Alexander-Orbach conjectur23] and was sub-
havior characteristic of many phenomgi®]. A transition  stantiated in Ref22]. The quantityC is the percolation con-
to SOC customarily leads to the formation of self-similar stant[21], the fundamental topological parameter deriving
(fracta) structures in a wide range of scales. Real-spacéom the transcendental algebraic equambrF’zF(CIZJr 1)
properties of these structures can often be described by the 7 [22]. (Here,I' is the Euler gamma functionReplacing
generalizedHausdorfj dimensiond;, which deviates from d,, by 2d;/C in Egs.(26) and(27), one arrives at the gener-
the topologicalintegey dimension of the system. In the fre- alized transport law for SOC:

guency domain, the fractal geometry of SOC systems ap-

pears in the power-law decreate” of the Fourier energy D~ 3 N2 UA2 (440 (40
density spectrunj18], where the power exponenj=2d;
—1 depends on the Hausdorff dimension [20]. Self- (l&®?)~2Dt (1), (41)
organized crit_icality thus esta_lblishes an intimate connectior=_|—he particle transport at SOC is thus superdiffusive for 1
between spatial scales and time scales for complex dynamgdf<c and subdiffusive foc<d;<S. The valued;=C re-

cal systems(Note that the topological characteristics of SOC pqqyces the diffusion-type behavi¢87),(38) and corre-
systems must obey the condition of path connectedness. Ebonds to the “Kolmogorov” Spectrunﬁ—'n where 7=2C

general, the features of connectedness of the fractal distribu- 1 ~ 1 g5-5/3. The upper limid; =S supports the subdif-
tions are not in one-to-one correspondence with the shape gfq;ye regime with the spectral index=25—1~2.78, the
the Fourier energy density spectrum as determined_nby urst exponentH =(/28~0.35, and the Kubo number ex-
[21].) In the context pf transport processes, the.not|on Oponenty=2$/(4S—C)~0.61. Finally, the valuel,=1 (re-
SOC can be considered as _synonymous with ..Self'lated to the Flicker noisé ') leads to the Hurst exponent
organization to a state of critical percolation.” For critical |4 _ »5__2/3 and the Kubo number exponept=2/(4—C)
percolation ~on  a plane, Ldi=<s [2.2] Where S ~3/4. The estimatéi~2/3 is in accord with the results of
=100108/l0g193~1.89 is the Hausdorff dimension of the c5perget g [24,25 who foundH ~0.6—-0.75 for the SOC-
square Sierpinski carpgB]. Hence I »<25-1~2.78.  sqqqciated currents in tokamaks. Moreover, Carretas
The limiting valued;=1 corresponds t% minimally devel- 551 gpserved a fluctuation spectrum closef - just in the
oped fractal structures in space anq.th spectrum often self-similarity region where superdiffusive transport with
referred to as Flicker noise. The critical percolation regime_ _ c_ 75 \as recognized. These intriguing results might
implies a “universal” relationship between the Hausdorff help uncover the fundamental relationship between the sta-

dimeqsion 01': t:e chaotic trajectr?riﬁdg,hand the fractil dil; tistical properties of SOC systems and the basic transport
mensiond; of the structure on which the random walk takes o -hanisms operating therein.
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